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10.1. Introduction

Biomedical image segmentation has been a crucial, yet challenging topic in the field of
medical image computing. It serves as one of the basic components for many biomedi-
cal related applications, such as medical disease diagnosis and biological interconnection
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Figure 10.1 (Left) The original ssTEM image. (Right) The corresponding segmentation annotation (in-
dividual components are denoted by different colors).

interpretation. For example, the neuronal circuit reconstruction, also termed as con-
nectome in neuroscience, from biological images can manifest the interconnections of
neurons for more insightful functional analysis of the brain and other nervous systems [1,
2]. The 2D serial high resolution Electron Microscopy (EM) imaging is commonly used
for the visualization of microneural circuits and hence is a very informative imaging
tool for the connectome analysis. Fig. 10.1 illustrates a 2D example of serial section
Transmission Electron Microscopy (ssTEM) images which are widely used for neuronal
structure segmentation [3].

As can be observed in Fig. 10.1, the segmentation problem for the neuronal struc-
tures can be very challenging in three ways. First, the image deformation during the
acquisition may blur the membrane boundaries between neighboring neurons as shown
in Fig. 10.1 (left). Second, the variation of neuron membrane in terms of image contrast
and membranal thickness can be very large. Particularly for the thickness, it can range
from solid dark curves to grazed grey swaths [4]. Third, the presence of intracellular
structures makes edge detection and region growing based methods ineffective for the
identification of neuron membrane. Some confounding microstructures may also mis-
lead the merging of regions or incorrect splitting of one region into several sections.
Meanwhile, the imaging artifacts and image alignment errors can impose difficulties on
the design of effective segmentation algorithms as well.

Recently, deep learning with hierarchical feature representations has achieved
promising results in various applications, including image classification [5], object de-
tection [6–8], and segmentation [9,10]. However, the performance gap between the
computerized results and human annotations can be still perceivable. There are two
main drawbacks of previous deep learning-based studies on this task. First, the operation
of sliding window scanning imposes a heavy burden on the computational efficiency.
This must be taken into consideration seriously regarding the large scale biomedical
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image segmentation. Second, the size of biological structures can be very diverse. Al-
though, classification with single size subwindow can achieve good performance, it may
produce unsatisfactory results in some regions where the size of contextual window is
set inappropriately.

In order to tackle the aforementioned challenges, we propose a novel deep con-
textual segmentation network for biomedical image segmentation. This approach in-
corporates the multilevel contextual information with different receptive fields, thus it
can remove the ambiguities of structural boundaries in essence that previous studies
may fail to do. Inspired by previous studies [11,12], we further make the model deeper
than in [11] and add auxiliary supervised classifiers to encourage the backpropagation
flow. This augmented network can further unleash the power of deep neural networks
for biomedical structure segmentation. Quantitative evaluation was extensively con-
ducted on the public dataset of 2012 ISBI EM Segmentation Challenge [13] and 2015
MICCAI Nuclei Segmentation Challenge, with rich baseline results for comparison in
terms of pixel- and object-level evaluation. Our method achieved the state-of-the-art
results, which outperformed those of other methods on all evaluation measurements. It
is also worth noting that our results surpassed the annotation by neuroanatomists when
measuring the warping error in the EM Segmentation task. In addition, the superior
performance on these two benchmarks demonstrated the generalization capability of
our proposed method.

10.2. Related work

10.2.1 Electron microscopy image segmentation
The ssTEM images can depict more than tens of thousands of neurons where each
neuron may have thousands of synaptic connections. Thus, the size of ssTEM images
is usually formidably large and is on a terabyte scale. Accordingly, the extremely com-
plicated interconnections of neuronal structures and sheer image volume are far beyond
the human capability for annotation, as the manual labeling of all neuronal structures
may take decades to finish [14–16]. In this case, automatic segmentation methods are
highly demanded to assist the parsing of the ssTEM images into concrete neurological
structures for further analysis [17].

Because of the anisotropic nature of ssTEM data, most previous methods were de-
vised under the framework of initial 2D membrane detection and latter 3D linking
process [4]. Although considerable progress has been made over the last decade, earlier
studies achieved a limited accuracy of segmentation and often failed to suppress the in-
tracellular structures effectively with the hand-crafted features, e.g., Radon and ray-like
features [18,19,2,20].

Recently, Ciresan et al. employed the deep convolutional neural network as a pix-
elwise classifier by taking a square window centered on the pixel itself as input, which
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contains contextual appearance information [11]. This method achieved the best per-
formance in 2012 ISBI neuronal structure segmentation challenge. A variant version
with iterative refining process has been proposed to withstand the noise and recover the
boundaries [16]. Besides, several methods worked on the probability maps produced
by deep convolutional neural networks as a postprocessing step, such as learning based
adaptive watershed [21], hierarchical merge tree with consistent constraints [22], and
active learning approach for hierarchical agglomerative segmentation [23], to further
improve the performance. These methods refined the segmentation results with respect
to the measurements of Rand and warping errors [24] with significant performance
boost in comparison to the results of [11].

10.2.2 Nuclei segmentation
With the advent of whole slide imaging scanners, tissue histopathology slides can be
digitized and stored in the form of digital images. Meanwhile, histopathological analysis
performed on these digital images has been demonstrated as an effective and reliable tool
for cancer diagnosis and prognosis [25]. In the routine of histopathological examination,
accurate detection and segmentation of certain histological structures, such as cancer
nuclei, is one of crucial prerequisite steps to obtain reliable morphological statistics
that characterize the aggressiveness of tumors. Specifically, counting of object instances
such as cell nuclei has diagnostic significance for some cancerous diseases [26–28]. This
requires an accurate detection and segmentation of cell nuclei. The nucleus morphism
has an important diagnostic value for cancer grading [29–31].

For the nuclei detection and segmentation, various methods have been proposed
to tackle this problem ranging from relatively simple approaches, such as thresholding
and morphological operations [32,33], to more sophisticated methods based on hand-
crafted features derived from boundaries/contours [26,34], gradients [35], Laplacian-of-
Gaussian [36], cytological and textural features [37], etc. Then different classifiers (e.g.,
Support Vector Machine (SVM), Adaboost, and Bayesian) have been employed in the
literature to detect and segment nuclei from histology images [38]. However, the hand-
crafted features suffer from limited representation capabilities, and hence they can be
vulnerable to different variations. Furthermore, the piecewise learning system separat-
ing feature extraction and classification may not be optimal or efficient for generating
precise probability maps of histological structures.

Recently, stacked sparse autoencoders (SSAE) were exploited with unsuper-
vised pretraining and following fine-tuning for nuclei detection from breast cancer
histopathology images in [27]. Although along with merit of unsupervised pretrain-
ing, which can handle the situation of limited medical training data, the autoencoders
usually achieved inferior performance on image recognition tasks compared to convolu-
tional neural networks (CNNs). The success of the latter networks is mostly attributed
to the more elegant structures for dealing with images. Regarding the convolutional
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neural networks, the authors of [39] employed deep convolutional neural networks for
mitosis detection and achieved the best performance in two grand challenges [40,41].
To further improve the efficiency and effectiveness, Hao Chen et al. [42] developed a
cascaded deep learning framework, i.e., a coarse model for retrieving candidates and
a fine-discrimination model for singling out mitoses from hard mimics. A spatially
constrained convolutional neural network was present in [43] incorporated with neigh-
boring ensemble prediction, demonstrating the efficacy of deep learning based features
from CNNs.

10.3. Method

10.3.1 Deep multilevel contextual network
In this section, we present a deeply supervised contextual network for biomedical im-
age segmentation. Inspired by recent studies of fully convolutional networks (FCNs) [9,
44], which replace the fully connected layers with all convolutional kernels, the pro-
posed network is a variant and takes full advantage of convolutional kernels for efficient
and effective image segmentation. The architecture of the proposed method is illus-
trated in Fig. 10.2. It basically contains two modules, i.e., downsampling path with
convolutional and max-pooling layers and upsampling path with convolutional and de-
convolutional layers. Noting that we upsampled the feature maps with the backwards
strided convolution in the upsampling path, thus we call them deconvolutional layers.
The downsampling path aims at classifying the semantical meanings based on the high
level abstract information, while the upsampling path is reconstructing the fine details
such as boundaries. The upsampling layers are designed by taking full advantage of the
different feature maps in hierarchical layers.

The basic idea behind this is that global or abstract information from higher layers
helps to resolve the problem of what (i.e., classification capability), and local informa-
tion from lower layers helps to resolve the problem of where (i.e., localization accuracy).
Finally, this multilevel contextual information are fused together with a summing op-
eration. The probability maps are generated by inputting the fused map into a softmax
classification layer. Specifically, the architecture of neural network contains 16 convo-
lutional layers, 3 max-pooling layers for downsampling, and 3 deconvolutional layers
for upsampling. The convolutional layers along with convolutional kernels (3 × 3 or
1 × 1) perform linear mapping with shared parameters. The max-pooling layers down-
sample the size of feature maps by the max-pooling operation (kernel size 2 × 2 with a
stride 2). The deconvolutional layers upsample the size of feature maps by the backwards
strided convolution [9] (2k × 2k kernel with a stride k, k = 2,4 and 8 for upsampling
layers, respectively). A nonlinear mapping layer (elementwise rectified linear activations)
is followed for each layer that contains parameters to be trained [5].



236 Handbook of Medical Image Computing and Computer Assisted Intervention

Figure 10.2 The architecture of the proposed deep contextual network.

10.3.2 Regularization with auxiliary supervision
In order to alleviate the problem of vanishing gradients and encourage the backpropa-
gation of gradient flow in deep neural networks, the auxiliary classifiers C are injected
for training the network. Furthermore, they can serve as regularization for reducing
the overfitting and improve the discriminative capability of features in intermediate lay-
ers [45,12,46]. The classification layer after fusing multilevel contextual information
produces the image segmentation results by leveraging the hierarchical feature represen-
tations. Finally, the training of whole network is formulated as a per-pixel classification
problem with respect to the ground-truth segmentation masks as follows:

L(X ; θ) = λ

2
(
∑

c

||Wc||22 + ||W ||22) −
∑

c

∑

x∈X
wcψc(x, �(x)) −

∑

x∈X
ψ(x, �(x)),

where the first part is the regularization term and latter one, including target and auxil-
iary classifiers, is the data loss term. The tradeoff between these two terms is controlled
by the hyperparameter λ. Specifically, W denotes the parameters for inferring the target
output p(x;W ), ψ(x, �(x)) denotes the cross-entropy loss regarding the true label �(x)

for pixel x in image space X , similarly ψc(x, �(x)) is the loss from cth auxiliary classifier
with parameters Wc for inferring the output, parameter wc denotes the correspond-
ing discount weight. Finally, parameters θ = {W ,Wc} of deep contextual network are
jointly optimized in an end-to-end way by minimizing the total loss function L. For the
testing data of biomedical images, the results are produced with an overlap–tile strategy
to improve the robustness.
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Figure 10.3 Illustration of contextual window size: (left) the original ssTEM image; (right) manual seg-
mentation result by an expert human neuroanatomist (black and white pixels denote the membrane
and nonmembrane, respectively).

10.3.3 Importance of receptive field
In the task of biomedical image segmentation, there is usually a large variation in the
size of structures. Therefore, the size of a receptive field plays a key role in the pixel-
wise classification given the corresponding contextual information. It’s approximated as
the size of object region with surrounding context, which is reflected as the intensity
values within the window. As shown in Fig. 10.3, the accurate recognition of different
regions from EM images may depend on different window sizes. For example, the clut-
tered neurons need a small window size for clearly separating the membranes between
neighboring neurons, while a large size is required for neurons containing intracellular
structures so as to suppress the false predictions. In the hierarchical structure of deep
contextual networks, these upsampling layers have different receptive fields. With the
depth increasing, the size of receptive field is becoming larger. Therefore, it can handle
the variations of reception field size properly that different regions demand for correct
segmentation while taking advantage of the hierarchical feature representations.

10.4. Experiments and results

10.4.1 Dataset and preprocessing
10.4.1.1 2012 ISBI EM segmentation

We evaluated our method on the public dataset of 2012 ISBI EM Segmentation Chal-
lenge [13], which is still open for submissions. The training dataset contains a stack
of 30 slices from an ssTEM dataset of the Drosophila first instar larva ventral nerve
cord (VNC), which measures approximately 2 × 2 × 1.5 microns with a resolution of
4 × 4 × 50 nm/voxel. The images were manually annotated in the pixel-level by a hu-
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man neuroanatomist using the software tool TrakEm2 [47]. The ground truth masks of
training data were provided while those of testing data with 30 slices were held out by
the organizers for evaluation. We evaluated the performance of our method by submit-
ting results to the online testing system. In order to improve the robustness of neural
network, we utilized the strategy of data augmentation to enlarge the training dataset
(about 10 times larger). The transformations of data augmentation include scaling, ro-
tation, flipping, mirroring, and elastic distortion.

10.4.1.2 2015 MICCAI nuclei segmentation

We also evaluated our method on the challenge dataset on Segmentation of Nuclei in Digi-
tal Pathology Images of Computational Brain Tumor Cluster of Event (CBTC) workshop
in conjunction with MICCAI 2015. The training data have at least 500 manually seg-
mented nuclei in 15 image tiles and testing data include 18 images for evaluation (the
ground truth is held out by the challenge organizers). Participants are asked to detect
and segment all the nuclei of testing tiles, which are extracted from whole slide tissue
images. The algorithm results are compared with consensus pathologist segmented sub-
regions. We utilize the strategy of data augmentation to enlarge the training dataset.
The transformations of data augmentation include translation and rotation.

10.4.2 Details of training
The proposed method was implemented with the mixed programming technology of
Matlab1 and C++ under the open-source framework of Caffe library [48]. We ran-
domly cropped a region (size 480 × 480) from the original image as the input into the
network and trained it with standard backpropagation using stochastic gradient descent
(momentum = 0.9, weight decay = 0.0005, the learning rate was set as 0.01 initially
and decreased by a factor of 10 every 2000 iterations). The parameter of corresponding
discount weight wc was set as 1 initially and decreased by a factor of 10 every 10000 it-
erations till a negligible value 0.01. The training time on the augmentation dataset took
about three hours using a standard PC with a 2.50 GHz Intel(R) Xeon(R) E5-1620
CPU and an NVIDIA GeForce GTX Titan X GPU.

10.4.3 2012 ISBI neuronal structure segmentation challenge
10.4.3.1 Qualitative evaluation

Two examples of qualitative segmentation results without morphological boundary re-
finement are demonstrated in Fig. 10.4. We can see that our method can generate
visually smooth and accurate segmentation results. As the red arrows show in the fig-
ure, it can successfully suppress the intracellular structures and produce good probability

1 MATLAB® is a trademark of The MathWorks.
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Figure 10.4 Examples of original EM images and segmentation results by our method (the darker
color of pixels denotes the higher probability of being membrane in neuronal structure).

maps that classify the membrane and nonmembrane correctly. Furthermore, by utiliz-
ing multilevel representations of contextual information, our method can also close gaps
(contour completion as the blue arrows shown in Fig. 10.4) in places where the contrast
of membrane is low. Although there still exist ambiguous regions which are even hard
for human experts, the results of our method are more accurate in comparison to those
generated from previous deep learning studies [49,11]. This evidenced the efficacy of
our proposed method qualitatively.

10.4.3.2 Quantitative evaluation metrics

In the 2012 ISBI EM Segmentation Challenge, the performance of different competing
methods is ranked based on their pixel and object classification accuracy. Specifically,
the 2D topology-based segmentation evaluation metrics include Rand, warping, and
pixel errors [13,24], which are defined as follows:

Rand error: 1 – the maximal F-score of the foreground-restricted Rand index [50],
a measure of similarity between two clusters or segmentations. For the EM segmentation
evaluation, the zero component of the original labels (background pixels of the ground
truth) is excluded.

Warping error: a segmentation metric that penalizes the topological disagreements (object
splits and mergers).

Pixel error: 1 – the maximal F-score of pixel similarity, or squared Euclidean distance
between the original and the result labels.

The evaluation system thresholds the probability maps with 9 different values
(0.1–0.9 with an interval of 0.1) separately and return the minimum error for each
segmentation metric. The quantitative comparison of different methods can be seen
in Table 10.1. Note that the results show the best performance for each measurement
across all submissions by each team individually. More details and results are available at
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Table 10.1 Results of 2012 ISBI segmentation challenge on neuronal structures.
Group name Rand error Warping error Pixel error Rank
** human values ** 0.002109173 0.000005341 0.001041591
CUMedVision (Our) 0.017334163 0.000000000 0.057953485 1
DIVE-SCI 0.017841947 0.000307083 0.058436986 2
IDSIA-SCI 0.018919792 0.000616837 0.102692786 3
optree-idsia [21] 0.022777620 0.000807953 0.110460288 4
CUMedVision-motif 0.025540655 0.000321579 0.057912350 5
motif [16] 0.026326384 0.000426483 0.062739851 6
SCI [22] 0.028054308 0.000515747 0.063349324 7
Image Analysis Lab Freiburg [51] 0.038225781 0.000352859 0.061141279 8
Connectome 0.045905709 0.000478999 0.062029263 9
PyraMiD-LSTM [49] 0.046704591 0.000462341 0.061624006 10
DIVE 0.047680695 0.000374222 0.058205303 11
IDSIA [11] 0.048314096 0.000434367 0.060298549 12
INI 0.060110507 0.000495529 0.068537199 13
MLL-ETH [2] 0.063919883 0.000581741 0.079403258 14
CUMedVision-4 (C3) 0.043419035 0.000342178 0.060940140
CUMedVision-4 (C2) 0.046058434 0.000421524 0.061248112
CUMedVision-4 (C1) 0.258966855 0.001080322 0.102325669
CUMedVision-4 (with C) 0.035134666 0.000334167 0.058372960
CUMedVision-4 (w/o C) 0.040492503 0.000330353 0.062864362
CUMedVision-6 (with C) 0.040406591 0.000000000 0.059902422
CUMedVision-4 (with fusion) 0.017334163 0.000188446 0.057953485

There are a total of 38 teams participating in this challenge.

the leader board.2 We compared our method with the state-of-the-art methods with or
without postprocessing separately. Furthermore, we conducted extensive experiments
with ablation studies to probe the performance gain in our method and detail as fol-
lows.

10.4.3.3 Results comparison without postprocessing

Preliminary encouraging results were achieved by the IDSIA team [11], which utilized a
deep convolutional neural network as a pixelwise classifier in a sliding window way. The
best results were obtained by averaging the outputs from 4 deep neural network mod-
els. Different from this method by training the neural network with different window
sizes (65 and 95) separately, our approach integrates multisize windows (i.e., different
receptive fields in upsampling layers) into one unified framework. This can help to
generate more accurate probability maps by leveraging multilevel contextual informa-

2 Please refer to the leader board for more details: http://brainiac2.mit.edu/isbi_challenge/leaders-board.

http://brainiac2.mit.edu/isbi_challenge/leaders-board
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tion. The Image Analysis Lab Freiburg team [51] designed a deep U-shaped network by
concatenating features from lower layers and improved the results of [11]. This further
demonstrated the effectiveness of contextual information for accurate segmentation.
However, with such a deep network (i.e., 23 convolutional layers), the backpropagation
of gradient flow may be a potential issue and training took a long time (about 10 hours).
Instead of using the convolutional neural network, the PyraMiD-LSTM team employed
a novel parallel multidimensional long short-term memory model for fast volumet-
ric segmentation [49]. Unfortunately, a relatively inferior performance was achieved
by this method. From Table 10.1, we can see that our deep segmentation network
(with 6 model averaging results, i.e., CUMedVision-6 (with C)) without watershed fu-
sion achieved the best performance in terms of warping error, which outperformed
other methods by a large margin. Notably it’s the only result that surpasses the per-
formance of expert neuroanatomist annotation. Our submitted entry CUMedVision-4
(with C) averaging 4 models (the same number of models as in [11]) achieved much
smaller Rand and warping errors than other teams also employing deep learning meth-
ods without sophisticated postprocessing steps, such as DIVE, IDSIA, and Image Analysis
Lab Freiburg. This corroborates the superiority of our approach by exploring multilevel
contextual information with auxiliary supervision.

10.4.3.4 Results comparison with postprocessing

Although the probability maps output from the deep contextual network are visually
very good, we observe that the membrane of ambiguous regions can sometimes be dis-
continued. This is partially caused by the averaging effect of probability maps, which are
generated by several trained models. Therefore, we utilized an off-the-shelf watershed
algorithm [52] to refine the contour. The final fusion result pf (x) was produced by fusing
the binary contour pw(x) and original probability map p(x) with a linear combination

pf (x) = wf p(x) + (1 − wf )pw(x). (10.1)

The parameter wf is determined by obtaining the optimal result of Rand error on the
training data in our experiments. After fusing the results from watershed method (i.e.,
CUMedVision-4 (with fusion)), the Rand error can be reduced dramatically while
unfortunately increasing the warping error. This is reasonable since these two errors
consider the segmentation evaluation metric from different aspects. The former could
penalize even slightly misplaced boundaries while the latter disregards nontopological
errors. Different from our simple postprocessing step, the SCI team postprocessed the
probability maps generated by the team DIVE and IDSIA with a sophisticated post-
processing strategy [22]. The postprocessed results were evaluated under the team name
of DIVE-SCI and IDSIA-SCI, respectively. Although it utilized a supervised way with
hierarchical merge tree to achieve structure consistency, the performance is relatively
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inferior compared to ours, in which only an unsupervised watershed method was used
for postprocessing. In addition, our method also outperformed other methods with so-
phisticated postprocessing techniques including optree-idsia and motif by a large margin.
This further highlights the advantages of our method by exploring multilevel contextual
information to generate probability maps with better likelihood. We released the prob-
ability maps including training and testing data of our method for enlightening further
sophisticated postprocessing strategies.3

10.4.3.5 Ablation studies of our method
In order to probe the performance gain of our proposed method, extensive ablation
studies were conducted to investigate the role of each component. As illustrated in
Table 10.1, compared with methods using single contextual information including
CUMedVision-4 (C3/C2/C1), the deep contextual model harnessing the multilevel
contextual cues achieved significantly better performance on all the measurements. Fur-
thermore, we compared the performance with (CUMedVision-4 (with C)) and without
(CUMedVision-4 (w/o C)) the injection of auxiliary classifiers C, the Rand and pixel
errors from method with C were much smaller while the warping error with C is com-
petitive compared to the method without C. This validated the efficacy of auxiliary
classifiers with deep supervision for encouraging backpropagation of gradient flow. By
fusing the results from the watershed method, we achieved the result with Rand error
of 0.017334, warping error of 0.000188, and pixel error of 0.057953, outperforming
those from other teams by a large margin. To sum up, our method achieved the best
performance on different evaluation measurements, which demonstrates the promising
possibility for real-world applications. Although there is a tradeoff with respect to dif-
ferent evaluation metrics, the neuroanatomists can choose the desirable results based on
the specific neurological requirements.

10.4.4 2015 MICCAI nuclei segmentation challenge
10.4.4.1 Qualitative evaluation
Some segmentation examples of testing data from 2015 MICCAI nuclei segmentation
challenge can be seen in Fig. 10.5. We can see that our method can accurately seg-
ment the nuclei from pathology images. Some touching nuclei can be further split with
postprocessing steps such as a watershed algorithm.

10.4.4.2 Quantitative evaluation metrics
The nuclei segmentation challenge employed two metrics for evaluation: traditional
Dice coefficient and object-level Dice coefficient. The Dice metric was applied to mea-
sure the amount of overlap between the results of algorithms and human annotations

3 See http://appsrv.cse.cuhk.edu.hk%7Ehchen/research/2012isbi_seg.html.

http://appsrv.cse.cuhk.edu.hk%7Ehchen/research/2012isbi_seg.html
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Figure 10.5 Examples of nuclei segmentation results: original images (left), probability maps (middle),
and segmentation results by our method (right).

in terms of the nuclei regions that were detected and segmented. Dice metric does not
take into account the cases of split and merge. A split is the case in which the human
segments a region in a single nucleus, but the algorithm segments the same region in
multiple nuclei. A merge is the case in which the algorithm segments a region into a sin-
gle nucleus, but the human segments the same region into multiple nuclei. Object-level
Dice coefficient is calculated based on the object-level segmentation, which provides a
measure of splits and merges. Readers can refer to the challenge website4 to learn more
details of Dice and object-level Dice coefficients. The final ranking score was made by
considering the average of Dice and object-level Dice coefficients.

10.4.4.3 Quantitative results and comparison

The quantitative results of our method and comparison with other methods can be
seen in Table 10.2. Our method achieved the highest Dice score and outperformed
other methods by a large margin, which demonstrates the efficacy and generalization
capability of our proposed method quantitatively.

4 2015 MICCAI nuclei segmentation challenge: http://miccai.cloudapp.net:8000/competitions/37.

http://miccai.cloudapp.net:8000/competitions/37
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Table 10.2 Results of testing data in 2015 MICCAI nuclei segmenta-
tion challenge.

Team Dice Object-level dice Score Ranking
Our team 0.877 0.722 0.799 1
Team2 0.826 0.694 0.760 2
Team3 0.792 0.642 0.717 3
Team4 0.813 0.617 0.715 4

10.4.5 Computation time
Generally, it took about 0.4 seconds to process one test image with size 512×512 using
the same configuration of training. Taking advantage of fully convolutional networks,
the computation time is much less than in previous studies [11,16] utilizing a sliding
window way, which caused a large number of redundant computations on neighboring
pixels. With new imaging techniques producing much larger volumes (terabyte scale),
the automatic methods with accurate and fast segmentation capabilities are of paramount
importance. The fast speed and better accuracy of our method make it possible for large
scale image analysis.

10.5. Discussion and conclusion

In this paper we have presented a deeply supervised contextual neural network for
biomedical image segmentation. By harnessing the multilevel contextual information
from the deep hierarchical feature representations, it can have better discrimination and
localization abilities, which are key to biomedical image segmentation related tasks.
The injected auxiliary classifiers can encourage the backpropagation of gradient flow
in training the deep neural network, thus further improving the segmentation perfor-
mance. Extensive experiments on the public dataset of 2012 ISBI EM Segmentation
Challenge and 2015 MICCAI Nuclei Segmentation Challenge corroborated the ef-
fectiveness and generalization capability of our method. In addition, our approach is
general and can be easily extended to other biomedical applications. Future work will
include further refining of the segmentation results with other sophisticated postpro-
cessing techniques [21–23] and more biomedical applications.
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